
A performance comparison of a RNN versus a
Discrete Stochastic approach in sequence prediction

Daniel Düring Knudsen
201606258
au568986

Thomas Wolff Kristensen
201607091
au566737

Abstract—Markov Chains is a well tested discrete stochastic
method used to predict future events and is in this report
compared to a more modern approach; a neural network with
a Long Short-term Memory layer in it. Both perform more or
less identically on the specific task investigated in this report,
namely using one prior label of assistive device in a sequence
in order to predict the following assistive device. The prediction
accuracy for both approaches is 0,27 when predicting the exact
device, while lowering the threshold to predicting correct with
either the first or second prediction results in an accuracy of 0,38,
while increasing the threshold to predicting the correct device in
3 attempts resulted in an accuracy of 0,46. As the amount of
distinct assistive devices is 247, the results for both approaches
are fairly good and it would be interesting to investigate this data
set further.

I. INTRODUCTION

Being able to predict a future value in a given sequence
has been a field with a lot of research and general interest
due to stock-trading [1], weather forecasting and many more
applications. While the benefits of being able to predict the
future are quite obvious, the best methods and approaches to
doing so are still being developed. This report will test two
distinct approaches, one being a Recurrent Neural Network
(RNN) and the other being a Discrete Stochastic approach.
The objective is first and foremost to compare these two tech-
niques’ accuracy in specifically predicting the next assistive
device in a sequence of assistive devices. The data set on which
the comparison will be conducted consists of patient records
containing lent out assistive devices. Being able to reason
about the probabilities of next assistive device in a sequence of
devices makes for an helpful decision support system where
field-experts can be reassured or even discouraged from the
next proposed assistive device.

According to [2] RNN’s are very good at predicting the next
word in a senctence or the next character in a word. Long-
Short Term Memory (LSTM) have proved more effective than
simple RNN’s [2] which makes LSTM a suitable candidate
solution to this problem. A more simple approach would be
to use Markov chains to determine what the next candidate
solution would be. Further details about the inner workings
will be explained in the Methods section.

One data set consist of records dating back to 1982 up to
the year 2020. Each record contains information of a device
being lent out to a citizen with accompanying information of
the device, date of loan as well as the gender and age of the
citizen. In total the data set contains 366.135 records. Each

device is assigned a DevISOClass which is a 8-digit number
and defines the class of assistive aid device the device is. The
data set contains close to 38.000 distinct citizens, which means
each citizen represented in the data set averages about 10 lent
out assistive devices. Each assistive device had a mean time of
being lent out of 688 days. The gender distribution in the data
set is over-represented by females as they make up for 216.752
of the records while males account for 149.366 records.

II. METHODS

A. Markov chains

Markov chains is a stochastic process, where the next state
Xt+1 only depends on the present state Xt and not the past
history, this is called the Markov property see equation 1 [3].

P (Xt+1 = st+1|Xt = st) = P (Xt+1 = st+1|X0 = i0, ..., Xt = it)
(1)

The next state most also be a value from a set of discrete
states, the set of states in this experiment would be the different
groups of aids a citizen would use. When using Markov chains
for prediction the most important part is the transition matrix,
a description of the transition matrix can be seen in figure 1.

Fig. 1. The transition matrix [3] has every possible next state Xt+1 as
columns and the current state Xt as rows were the sum of probabilities for
each row should be 1.

The matrix P shows the possibility of changing from one
state to another see equation 2 [3], also called conditional
probability. This means that if you have N possible states the
matrix P would be a square matrix of N · N , and each row
should have a sum of 1.

Pij = P (Xt+1 = j|Xt = i) (2)

B. Long Short-Term Memory

The LSTM method is used to overcome certain shortcom-
ings of a standard Recurrent Neural Network. Two of the

problems with RNN’s is the decaying error back flow or the
exploding error back flow. LSTM utilizes input and output
gates in the neurons as well as ”constant error carousels”
(CEC) to keep the error back flow constant. This CEC is
the central part of the LSTM-method and allows for quicker
training of models compared to RNN’s while making them
able to solve more complex and long time tasks [4]. RNN’s are
in principle able to obtain recent input, or short term memory
in form of activation functions as well as long term memory by
slowly adjusting the weights of the neurons in the layer. The
value of these weights will either blow error back-propagation
signals out of proportion or decay into near zero values with
standard RNN-methods while LSTM-methods will keep them
constant [4].

C. Testing methodology

The two approaches will be tested on a single data set with
the objective being predicting the next assistive device in a
sequence. Say for instance we have an input sequence of N
assistive devices with the sequence being AD0, AD1, ...ADN

then we aim to predict the assistive device ADN+1. Although
the concrete tests will only consist of input sequences of length
1 for testing the Markov Chain approach. The performances
will be evaluated on the accuracy with which each approach
is able to predict the next assistive device as well as the next
assistive device being in the top k candidates of a prediction.
k being a value in the range 1 to 5.

Besides accuracy, the time and space complexity will also
be assessed as these characteristics also may serve as important
metrics when deciding which approach to use. Concretely this
will be done by averaging the the time it takes to train models
using each approach with the same data-set and using Early
Stopping [5] when validation accuracy decreases for the neural
network. The data set will be split into a training and a testing
data set where 80 percent of the data set will be used for
training while 20 percent will be used for testing.

D. Data Preprocessing

A series of data cleaning as well as feature engineering
steps needs to be performed in order to facilitate the potential
of achieving optimal results when applying the two models to
the data. These include but are not limited to:

1) Removing/correcting null values in records
2) Removing sequences with only a single assistive device
3) Remove outliers in data
As the neural network layers cannot work with categorical

data like the labels of assistive devices, a one-hot encoding
step is needed to convert the assistive devices into numerical
values the model can work with. An illustration of this process
can be seen on the figure below

After each epoch-training is finished we get some informa-
tion about the training time, training loss as well as training
accuracy - but after each epoch the trained model is also
validated towards the validation set and a validation loss
score is measured. The training is set to run indefinitely until
reaching a minimum for validation loss and the next 5 epochs

Fig. 2. Visualisation of one-hot encoding of categorical data. [6]

don’t improve on the best loss. This makes sure the found
minimum is not just a local one minimum.

A description of the architecture is printed by the Tensorflow
[7] library upon training and can be seen below on picture 3:

Fig. 3. Picture above is a snippet from running ”model.summary()” on the
model used in for training neural network.

III. RESULTS

The measurements for LSTM and Markov chains will be
described in this section, with accuracy as the metric. The
measurements can be seen in figure 4 with different number
of candidate solutions for each model.

Fig. 4. The plot shows the accuracy for LSTM and Markov chains with
different number of candidate solutions. The accuracy for the different values
of k: k = 1 are 27 %, k = 2 are 38 %, k = 3 are 46 %, k = 4 are 52 % and
k = 5 are 57 %

When looking at the training and prediction time complexity
for Markov chains, the training time complexity could be
expressed as O(n2) were n is the number of distinct assistive
devices. The prediction time complexity could be expressed
as O(n) were n is the number of observations that need
to be predicted. The prediction time for 91.158 is 45,38
seconds, which gives a mean time per sample of 0,5 ms

Fig. 5. On figure 5 the model-performance can be seen after training for a
single epoch. We can see the training lasted 45 seconds - and we know the
batch size is set to 32 (default value) for the network and it trained on 6.906
batches, which means each sample took 6,5 ms. to train.

Regarding space complexity a profiler has been used which is
called memory profiler [8]. The profiler has been applied on
generating the transition matrix and predicting the future state
using the generate transition matrix, which gave the following
results. Training space complexity is equal to 236 MiB and
prediction space complexity is equal to 84MiB, which gives
an combined space complexity of 320MiB for Markov chains.

Assessing the space and time complexity for the neural
network is done by measuring the amount of epochs and
training steps before reaching a minimum in validation loss.
With a “simple” network architecture consisting of:

1) An embedding layer to transform the categorical values
of assistive devices into vectors.

2) layer being the LSTM-layer with 64 units.
3) a dense layer with the amount of distinct assistive

devices being the amount of output neurons.
The total training space complexity for the neural network

described above measured with the same profiler as used
for the Markov Chain amounts to 1.862 MiB while the
final model takes up 2.185KB in storage. While a test set
containing 55.248 samples takes 6,85 seconds to predict upon,
which gives a mean time per sample on 0,12 ms.

The model performance after training on a single epoch can
be seen on below picture 5:

The best performing model evaluated on validation loss was
found after 41.440 iterations, which was after 6 epochs of
training - the results can be seen on figure 6 below.

Fig. 6. Validation-loss as a function of training iterations of batches with
batch-size 32

The training loss together with validation loss as a function
of epochs can be seen on figure 7 below.

Fig. 7. Train loss and validation loss as a function of epochs

The results for predicting the next top k assistive device for
the neural network can be seen below on figure 8.

Fig. 8. The x-axis is number of trained epochs with y-axis being the accuracy.
The blue line on all graphs are the accuracy for validation data-set, while the
orange is the accuracy for the training data-set. These 5 graphs each show
the accuracy for predicting the next assistive device among top 1, 2, 3, 4 or
5 devices.

IV. DISCUSSION

From the results it can be seen that both approaches perform
well on the data set when only looking at the sequence of
assistive devices, and LSTM and markov chains has almost
the same accuracy. This might be because there only is one
input feature for LSTM. It can then only use the probability
of prior observations to predict the new value, which is
very similar to Markov chains. The performances depend on
number of candidate solutions that are accepted, if the criteria
is only one candidate solution both approaches reaches 27
% in accuracy, which is deemed acceptable since there are
almost 250 possible candidate solutions. Allowing an increase
in number of candidate solutions, gives an improvement that
results in 46 % accuracy for 3 candidate solutions and 57 %
in accuracy for 5 candidate solutions, which can be seen in
figure 4. While both approaches perform similarly one might
prefer to use the Markov Chain approach as this is a lot

simpler computationally to create as well as reason about.
As the models might grow more complex and features will
be increased the RNN might start to outperform the Markov
Chain and then it depending on the application one might
prefer the best performing method over the simpler one.

V. CONCLUSION

From the results it can be concluded that there is a pattern in
assistive aids sequences for a citizen, and out of 250 potential
next assistive aids it is possible to predict the next assistive
aid device with an accuracy of 27 %. If multiple candidate
solutions are acceptable an improvement of accuracy can be
gained, with 5 candidate solutions the accuracy is 57 % which
is more than twice as high.

VI. FUTURE WORK

As the results presented in this report are generated on
rather sparse information with several features in the original
data-set not being utilized we see multiple avenues worthy of
investigation. Some of these could be to:

1) Binning of continuous data points.
2) Zero-pad input sequences to assure input sequences of

same length. Then combine different length sequences
to generate more training data.

3) Normalization of relevant features.
4) Hyper parameter optimize neural network.
Binning of age of citizens upon receival of assistive device

could assist the models in distinguishing between discrepan-
cies in age groups when looking at what assistive devices
is given to the citizens. The zero-padding preprocessing step
would increase the amount of data and might make the model
more robust and even increase accuracy. Say for instance there
exists a sequence with 5 assistive devices, then instead of
only using this sequence once, that is using the sequence
AD0, AD1, AD2, AD3 to predict AD4, the same sequence
can be split up into smaller sequences to train on. With the
aforementioned example this would result in these train or test
inputs:

TABLE I
EXTENSION OF TRAINING AND TEST DATA BY USING SUB-SEQUENCES

Input Expected Output
0, 0, 0, AD0 AD1

0, 0, AD0, AD1 AD2

0, AD0, AD1, AD2 AD3

AD0, AD1, AD2, AD3 AD4

In order to increase the performance of the LSTM-method
more features could be added and each feature could be
normalized to investigate if that would increase performance.
Maybe the most obvious test would be to test different neural
network architectures as well as optimize hyper parameters as
the one used in this report is very simple.

Another interesting thing to investigate in future work would
be to predict longer sequences and quantify the likelihood of
different output sequences.

REFERENCES

[1] Farewell RNNs, Welcome TCNs. How Temporal Convo-
lutional Networks are. . . — by Bryan Tan — Towards
Data Science. (Accessed on 05/07/2021).

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. http://www.deeplearningbook.org. MIT
Press, 2016.

[3] Chapter 8: Markov Chains. https://www.stat.auckland.
ac . nz / ∼fewster / 325 / notes / ch8 . pdf. (Accessed on
06/03/2021).

[4] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-
term Memory”. In: Neural computation 9 (Dec. 1997),
pp. 1735–80. DOI: 10.1162/neco.1997.9.8.1735.

[5] tf.keras.callbacks.EarlyStopping — TensorFlow Core
v2.5.0. https : / / www . tensorflow . org / api docs /
python/tf/keras/callbacks/EarlyStopping. (Accessed on
06/03/2021).

[6] Building a One Hot Encoding Layer with TensorFlow
— by George Novack — Towards Data Science. https:
//towardsdatascience.com/building-a-one-hot-encoding-
layer - with - tensorflow - f907d686bf39. (Accessed on
06/03/2021).

[7] TensorFlow. https://www.tensorflow.org/. (Accessed on
06/04/2021).

[8] memory profiler. https : / / pypi . org / project / memory -
profiler/. (Accessed on 06/04/2021).

http://www.deeplearningbook.org
https://www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf
https://www.stat.auckland.ac.nz/~fewster/325/notes/ch8.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping
https://towardsdatascience.com/building-a-one-hot-encoding-layer-with-tensorflow-f907d686bf39
https://towardsdatascience.com/building-a-one-hot-encoding-layer-with-tensorflow-f907d686bf39
https://towardsdatascience.com/building-a-one-hot-encoding-layer-with-tensorflow-f907d686bf39
https://www.tensorflow.org/
https://pypi.org/project/memory-profiler/
https://pypi.org/project/memory-profiler/

	Introduction
	Methods
	Markov chains
	Long Short-Term Memory
	Testing methodology
	Data Preprocessing

	Results
	Discussion
	Conclusion
	Future work

